If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160x+32x^2-192=0
a = 32; b = 160; c = -192;
Δ = b2-4ac
Δ = 1602-4·32·(-192)
Δ = 50176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{50176}=224$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-224}{2*32}=\frac{-384}{64} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+224}{2*32}=\frac{64}{64} =1 $
| 14y′+y′′+50y=0 | | 9y′+y′′+14y=0 | | 200=40-1y | | d/14.1-6.7=-18.2 | | |2r+3|=-3 | | 7w+14-3w=92+4w | | w/3.6=8.4 | | 7.8k=97.5 | | -23m=115 | | (5a)^5=3 | | 21r-6=4(7r-2) | | -40x+120=-155x+20 | | 3*0+6*y=1800 | | 64=4*6*2+2*2*h | | 8x+64=3x | | 19X+5y=-7 | | 07x=3.5 | | 12x21=44 | | −2y+1+6=4 | | |−2y+1|+6=4 | | ||−2y+1||+6=4 | | F(n)=9n-12 | | y+5y/2=180 | | (9x+9)-3x=6x+9 | | 6(5t−2)=−31(7−t) | | 10.2x8.5=86.7 | | 110x+x=110 | | 15/x=0.04 | | 2=(0.08)^x | | -(2x-6)-(6x-9)+4=-7(x-3)-(8x+5)+9 | | 2y−74+178=4y+108 | | 8x-4=45-9x |